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Parallelism is Finally Mainstream…

� All computer vendors are now building multiprocessors

� Diminishing returns from uniprocessor architectures

� 4, 8, 16, …, 1024, … processors on a chip

� Scientific computing no longer a niche

� All programs must now become parallel programs

– Need: practical & efficient parallel model

� Parallel programs must be scalable and portable

– Need: write code once, run efficiently at any scale

� This talk

� Look at a promising solution from mainstream computing

– Transaction-based shared-memory

� Can it help with large-scale parallel computing?
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The State of the Art

� Shared-memory multiprocessors

� Implicit communication hidden from programmer

� Easy to write first version; difficult to optimize

� Difficult to write SM programs with >16 CPUs (NUMA)

� Message-passing multiprocessors

� Explicit communication orchestrated by programmer

� Difficult to write first version; simpler to tune afterwards

� MPI: the defacto standard for large-scale machines

– But too painful to use in most commercial environments 

� Common pains

� Programmer productivity suffers 

� Architectural knowledge required to tune performance

� Each 10x increase in scale requires revisiting everything
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The Quest for Scalable Parallelism

� Summary: we want SM ease with MP performance

� Application characteristics

� Large data-sets that stress caches and interconnects

� Irregular & adaptive patterns that complicate programming

� Detailed requirements

� Scalable execution resources (FLOPS)

– This is the easy part of the problem 

� Efficient mechanisms to manage locality & communication

� Methods to instrument & analyze system behavior

� Methods to dynamically tune program to system behavior

� Reliable operation in the presence of faults
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Transactional Memory (TM) 101

� Shared-memory with transactional semantics

� Program access shared data using atomic tasks

� System provides atomicity, isolation, and consistency

� Parallel performance through optimistic concurrency

� Assume independence and execute without any locks

� If not true, abort and re-execute

� TM simplifies parallel programming

� Coarse-grain, non-blocking synchronization for parallel algorithms

� Speculative parallelization for sequential algorithms



6C. Kozyrakis, February 2006

TCC: All Transactions, All The Time
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Transactional coherence with deadlock-freedom guarantees

Intuitive consistency model that allows aggressive re-ordering

See [ISCA’04] for details
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Small-scale Implementation (CMP)

� Similar implementations for other CMP systems

Changes for TCC support
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Small-scale Implementation (CMP)

Speculatively-Read Bits:

ld 0xdeadbeef

Speculatively-Modified Bits:

st 0xcafebabe

Violation Detection:

Compare incoming 
address to SR bits

Commit:

Read pointers from Store 
Address FIFO, flush data 
with SM bits set

See [PACT’05] for details
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Small-scale Performance

� Good performance across 
application domains

� More details at [ISCA’04, 
ASPLOS’04, PACT’05, 
SCOOL’05]

� Fee

� Good performance across applications domains

� Easy to program and tune using feedback from hardware

� TCC hardware continuously monitors memory accesses

� Can identify most important performance bottlenecks for programmer
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Large-scale Transactional Memory?

� Can TM scale beyond CMPs?

� How do you implement TM in a NUMA environment?

� Can communication be optimized automatically?

� How do you reach efficiency of message-passing model? 

� Can TM assist with system reliability? 

� How do we exploit the atomicity in the case of faults?

� What is the prototype system for this research? 

� How do we provide a machine fast enough for scientists and 
flexible enough for architects?  
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Large-scale TCC Performance

� Directory-based implementation for NUMA systems

� Using parallel commit with two-phase protocol

� Same execution model from programmer’s perspective

� Scalable performance for large processor counts

� Limited by dataset sizes for most of our experiments  
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Automatic Locality Optimizations

� Build upon continuous memory monitoring

� Learn which data accessed within same transaction

� Learn associations between code and data groups

� Learn common producer/consumer patterns

� Optimizations enabled

� Aggressive prefetching without sequential patterns

� Schedule transactions close to their data

� Proactively turn transaction commits to message sends

� The overall opportunity

� Get message-passing behavior from a shared-memory system
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TCC Profiling Environment

� HW continuously track performance

� Log events, cause, cost

� Aggregates over multiple occurrences

� Periodically flush to main memory

� Profiling accuracy

� Pinpoints top performance problems

– Type of performance problem

– Related PCs, object addresses

� Optimize applications in 2-3 steps

� Profiling cost

� <1% performance loss

� <1% area overhead See [ICS’05] for details
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Reliability Optimizations 

� Micro-level: TM provides failure atomicity

� Easy “undo” of computation after fault is detected

� Works with for both hardware and software faults

� Allows software to decide how to best handle error recovery

– Retry, migrate & retry, fail safely…

� Macro-level: TM simplifies app-level checkpointing

� Transactions define clean boundaries for checkpoints

� Can take checkpoint without stopping application

� The overall opportunity

� A reliability framework that requires minimal programmer or 
operator involvement
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The Research Infrastructure: FARM

� An industrial strength, scalable prototype

� Full chassis: 19 TFLOPS and 280GB DRAM

� Advantages

� Programmers: research features at industrial speeds

� Architects: customizable memory & communication system
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Conclusions

� Large-scale parallelism is now a general need

� All programs must now become parallel programs

� Parallel programs must be scalable and portable

� Transactional memory

� Shared-memory with atomicity guarantees

� Good performance with easy coding/tuning for CMPs

� TM can also help with scalable parallelism

� Automatic optimizations for locality

� Support for system reliability

� Promising direction for parallel systems research

� Hardware, runtime, programming models, …
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Questions?

More info at   http://tcc.stanford.edu


